Background. To investigate the relationship between primary ovarian insufficiency and autophagy, we detected and got the expression profile of human granulosa cell line SVOG, which was with or without LPS induced. The expression profile was analyzed with the focus on the autophagy genes, among which hub genes were identified. Results. Totally, 6 genes were selected as candidate hub genes which might correlate with the process of primary ovarian insufficiency. The expression of hub genes was then validated by quantitative real-time PCR and two of them had significant expression change. Bioinformatics analysis was performed to observe the features of hub genes, including hub gene-RBP/TF/miRNA/drug network construction, functional analysis, and protein-protein interaction network. Pearson’s correlation analysis was also performed to identify the correlation between hub genes and autophagy genes, among which there were four autophagy genes significantly correlated with hub genes, including ATG4B, ATG3, ATG13, and ULK1. Conclusion. The results indicated that autophagy might play an essential role in the process and underlying molecular mechanism of primary ovarian insufficiency, which was revealed for the first time and may help to provide a molecular foundation for the development of diagnostic and therapeutic approaches for primary ovarian insufficiency.