Silicon (Si) has been recently reconsidered as a beneficial element due to its direct roles in stimulating the growth of many plant species and alleviating metal toxicity. This study aimed at validating the potential of an aquatic macrophyte Eleocharis acicularis for simultaneous removal of heavy metals from aqueous solutions under different dissolved Si. The laboratory experiments designed for determining the removal efficiencies of heavy metals were conducted in the absence or presence of Si on a time scale up to 21 days. Eleocharis acicularis was transplanted into the solutions containing 0.5 mg L−1 of indium (In), gallium (Ga), silver (Ag), thallium (Tl), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) with various Si concentrations from 0 to 4.0 mg L−1. The results revealed that the increase of dissolved Si concentrations enhanced removal efficiencies of E. acicularis for Ga, Cu, Zn, Cd, and Pb, while this increase did not show a clear effect for In, Tl, and Ag. Our study presented a notable example of combining E. acicularis with dissolved Si for more efficient removals of Cu, Zn, Cd, Pb, and Ga from aqueous solutions. The findings are applicable to develop phytoremediation or phytomining strategy for contaminated environment.