The accurate determination of the piston fall rate is one of critical parameters in dead weight testers and piston gauges, as it confirms a quality of machining, instrument accuracy class, and long-term stability. This study introduces a method for determining piston fall rate using two triangulating laser distance sensors. This approach offers versatile applicability, in high-precision standards as well as in regular-class instruments, and is robust in accommodating variations in measurement ranges, pressure transmitting mediums, materials of weights, and weight diameters. The method utilizes two laser sensors symmetrically positioned under the primary weight of the piston pressure gauge, allowing for seamless measurements without the need for sensor adjustments. The data collected from these sensors are processed to calculate the average displacement of the primary weight. The method’s effectiveness is demonstrated with high linearity and precision in determining the piston weight fall rate. This approach can lead to improvements in fluid dynamics analysis and metrology of precise pressure balances. The method’s advantages include error mitigation and reduced operator intervention, making it highly suitable for applications requiring accurate piston descent velocity measurements, particularly in older measuring instruments. The establishment of a reference dataset can enhance the accuracy of periodic examinations of piston-cylinder assemblies, thereby reducing costs and improving measurement quality.