2011
DOI: 10.1590/s0100-204x2011000500014
|View full text |Cite
|
Sign up to set email alerts
|

Estatística multivariada aplicada à diminuição do número de preditores no mapeamento digital do solo

Abstract: O objetivo deste trabalho foi avaliar a possibildade de se gerar um menor conjunto de preditores não correlacionados e potencialmente aplicáveis ao mapeamento digital de solos, pelo uso da estatística multivariada. Os atributos de terreno, elevação, declividade, distância à drenagem, curvatura planar, curvatura de perfil, radiação relativa disponível, logaritmo natural da área de contribuição, índice de umidade topográfica e capacidade de transporte de sedimento, foram transformados pelo método Varimax nas var… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
3

Year Published

2017
2017
2021
2021

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(9 citation statements)
references
References 17 publications
0
6
0
3
Order By: Relevance
“…The results justify the use of PCA, as there was a decrease in the number of variables to be interpreted and an increase in the discriminating power of each new variable (PC) (TEN CATEN et al, 2011), despite the loss of 17.48% of climatic data.…”
Section: Discussionmentioning
confidence: 62%
See 1 more Smart Citation
“…The results justify the use of PCA, as there was a decrease in the number of variables to be interpreted and an increase in the discriminating power of each new variable (PC) (TEN CATEN et al, 2011), despite the loss of 17.48% of climatic data.…”
Section: Discussionmentioning
confidence: 62%
“…Principal component analysis (PCA) was performed to summarize the number of climatic variables and to, thus, increase the discriminating power of each new variable, which are the principal components (PCs). Since the PCA was performed using standardized data (average equal to zero and variance equal to one), only PCs with an eigenvalue greater than 1 were significant, since this is the variance of each variable individually (TEN CATEN et al, 2011). The PCs were considered significant when the absolute values were higher than 0.7 (JOLLIFFE, 1973).…”
Section: Discussionmentioning
confidence: 99%
“…The performance gain in MLR models, already in the selection of covariates by correlation, excluding those with highly correlated (Figure 3), is probably due to the multicollinearity problem (Kempen et al, 2009;ten Caten et al, 2011), which significantly affects the model performance. The MLR with several covariates showed a tendency to have the worst performance because of its effect of harmful multicollinearity in the parametric models; thereby impairing the model.…”
Section: -D Approachmentioning
confidence: 99%
“…Analisando-se a Figura 3 observa-se que as variáveis que estiverem mais próximas ao círculo unitário, possuem uma maior contribuição em relação àquelas que estiverem mais afastadas. De acordo com Caten et al (2011), também deve ser observado o ângulo formado entre duas variáveis, demonstrando maior ou menor correlação entre as mesmas. Assim, TER e SEC; e CSIM e PCVU contribuem fortemente na análise e possuem correlação significativa, devido ao pequeno ângulo formado entre estas variáveis.…”
Section: Análise De Fatores Para Os Custos Da Fase De Pós-colheita Dounclassified