2020
DOI: 10.4995/raet.2020.13394
|View full text |Cite
|
Sign up to set email alerts
|

Estimación de variables esenciales de la vegetación en un ecosistema de dehesa utilizando factores de reflectividad simulados estacionalmente

Abstract: <p>Mixed vegetation systems such as wood pastures and shrubby pastures are vital for extensive and sustainable livestock production as well as for the conservation of biodiversity and provision of ecosystem services, and are mostly located in areas that are expected to be more strongly affected by climate change. However, the structural characteristics, phenology, and the optical properties of the vegetation in these mixed -ecosystems such as savanna-like ecosystems in the Iberian Peninsula which… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
4
1

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 71 publications
0
2
0
1
Order By: Relevance
“…y algunos alcornoques (Quercus suber L.) y quejigos aislados (Quercus faginea Lam.) (Martín et al, 2020). El estrato herbáceo cubre prácticamente la totalidad de la zona de estudio y está conformado por una gran variedad de especies, en su mayoría anuales con un ciclo fenológico muy dinámico.…”
Section: áRea De Estudio Y Diseño Experimentalunclassified
“…y algunos alcornoques (Quercus suber L.) y quejigos aislados (Quercus faginea Lam.) (Martín et al, 2020). El estrato herbáceo cubre prácticamente la totalidad de la zona de estudio y está conformado por una gran variedad de especies, en su mayoría anuales con un ciclo fenológico muy dinámico.…”
Section: áRea De Estudio Y Diseño Experimentalunclassified
“…Therefore, these parameters varied daily. LAI was derived from an empirical relationship with NDVI (Martín et al, 2020) (roughly three times NDVI). C ab was predicted using a model fit from field spectral measurements and pigment content determined from destructive samples of 25 × 25 cm grass patches, sampled in several campaigns between 2017 and 2019 (Martín et al, 2020;Melendo-Vega et al, 2018).…”
Section: Journal Of Geophysical Research: Biogeosciencesmentioning
confidence: 99%
“…LAI was derived from an empirical relationship with NDVI (Martín et al, 2020) (roughly three times NDVI). C ab was predicted using a model fit from field spectral measurements and pigment content determined from destructive samples of 25 × 25 cm grass patches, sampled in several campaigns between 2017 and 2019 (Martín et al, 2020;Melendo-Vega et al, 2018). C ab was estimated as C ab = (0.007 − (0.0001/NDVI) • log (1 + (NDVI/0.0001))) • 4,443, while C ca was predicted as a function of C ab , according to the linear model C ca = 0.24 • C ab + 0.67 using field information from the same data set.…”
Section: Journal Of Geophysical Research: Biogeosciencesmentioning
confidence: 99%