2018
DOI: 10.29303/emj.v1i1.8
|View full text |Cite
|
Sign up to set email alerts
|

Estimasi Parameter Model Moving Average Orde 1 Menggunakan Metode Momen dan Maximum Likelihood

Abstract: Autoregressive Integrated Moving Average is a model that commonly used to model time series data. One model that can be modeled is Moving Average (MA). In this study, the estimation of parameters was performed to produce the model estimator parameter, where if the order component of the MA model is known, then the methods that can be used are the Ordinary Least Square (OLS) method, Moment method, and Maximum Likelihood method. But in fact, there are often assumption deviations when using the OLS method, one of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…Evaluasi forcasting penelitian ini menggunakan pengukuran tingkat keakuratan yaitu Mean Square Error (MSE) dan Root Mean Square Error (RMSE) pada persamaan (15) dan persamaan (16), dengan Mean Absolute Error (MAE) pada persamaan (17). 16)…”
Section: Evaluasi Forecastingunclassified
“…Evaluasi forcasting penelitian ini menggunakan pengukuran tingkat keakuratan yaitu Mean Square Error (MSE) dan Root Mean Square Error (RMSE) pada persamaan (15) dan persamaan (16), dengan Mean Absolute Error (MAE) pada persamaan (17). 16)…”
Section: Evaluasi Forecastingunclassified
“…The Moving Average (MA) model is one of the time series models possibly selected. Moreover, if the order q from the Moving Average process is known, there are three methods possibly applied in estimating the parameter: the Moment method, the Ordinary Least Square (OLS) method, and the Maximum Likelihood method (Nirwana et al, 2018). Due to the complexity of MA (q) parameter estimation, estimating ARIMA (p,d,q) parameter becomes very complex; hence estimation of the ARIMA parameter is done using the Maximum Likelihood method.…”
Section: Estimation Of Parametermentioning
confidence: 99%