2020
DOI: 10.30871/ji.v12i2.2163
|View full text |Cite
|
Sign up to set email alerts
|

Estimasi State of Charge Baterai Lithium Polymer Menggunakan Back Propagation Neural Network

Abstract: Baterai merupakan salah satu komponen yang penting dalam konteks implementasi renewable energy. Jenis Baterai yang memiliki kepadatan dalam penyimpanan energy adalah lithium polymer. Parameter dalam baterai yang harus diperhatikan adalah estimasi State Of Charge (SOC). Pada umumnya estimasi SOC baterai menggunakan metode coloumb counting karena tingkat kesulitanya rendah. Namun terdapat kelemahan dari sisi ketergantungan terhadap utilitas sensor arus yang digunakan sebagai akumulasi dari integral arus yang mas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…From the results of the regression plot graph, the structure of the ANN algorithm diagram appears as shown in Figure The structure of the FFNN network diagram is shown in Figure 5 which consists of several constituent components namely, Process Input 1; layer 1; Layer 2 and Process Output 1. Of the four main process components of the ERNN network above, then they are discussed in more detail to obtain Equations (1-6) (Prasetyo et al, 2020). In the input process for learning artificial neural networks, data normalization is carried out with the aim of producing a data representation that has a smaller value than the original data, but without losing its characteristics.…”
Section: Transformer Temperature Risementioning
confidence: 99%
“…From the results of the regression plot graph, the structure of the ANN algorithm diagram appears as shown in Figure The structure of the FFNN network diagram is shown in Figure 5 which consists of several constituent components namely, Process Input 1; layer 1; Layer 2 and Process Output 1. Of the four main process components of the ERNN network above, then they are discussed in more detail to obtain Equations (1-6) (Prasetyo et al, 2020). In the input process for learning artificial neural networks, data normalization is carried out with the aim of producing a data representation that has a smaller value than the original data, but without losing its characteristics.…”
Section: Transformer Temperature Risementioning
confidence: 99%