2023
DOI: 10.4213/sm9889e
|View full text |Cite
|
Sign up to set email alerts
|

Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains

Anton Dmitrievich Baranov,
Ilgiz Rifatovich Kayumov

Abstract: A number of questions concerning the behaviour of double integrals of the moduli of the derivatives of bounded $n$-valent functions and, in particular, of rational functions of fixed degree $n$ are considered. For domains with rectifiable boundaries the sharp order of growth of such integral means is found in its dependence on $n$. Upper bounds for domains with fractal boundaries are obtained, which depend on the Minkowski dimension of the boundary of the domain. In certain cases these bounds are shown to be c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?