Knowledge of the genetic control of pork quality traits and relationships among pork quality, growth, and carcass characteristics is required for American swine populations. Data from a 2 x 2 diallel mating system involving Landrace and Duroc pigs were used to estimate heritabilities and genetic correlations among growth (ADG), real-time ultrasonic (US) measures of backfat thickness (BF) and longissimus muscle area (LMA), carcass characteristics, and various pork quality traits. Data were collected from 5,649 pigs, 960 carcasses, and 792 loin chops representing 65, 49, and 49 sires, respectively. Genetic parameters were estimated by REML assuming animal models. Heritability estimates were moderate to high for ADG, USBF, USLMA, carcass BF, and LMA, percentage of LM lipid (IMF), pork tenderness, and overall acceptability. Estimates were low to moderate for percentage of cooking loss, pH, shear force, percentage of LM water, water-holding capacity (WHC), pork flavor, and juiciness. Genetic correlations between US and carcass measures of BF and LMA indicate that selection based on US data will result in effective improvement in carcass characteristics. Selection for increased LMA and(or) decreased BF using US is, however, expected to result in decreased IMF and WHC, increased percentage of LM water and shear value, and in decreased juiciness, tenderness, and pork flavor. Average daily gain was favorably correlated with IMF and unfavorably correlated with shear force. Selection for increased ADG is expected to improve WHC but to decrease the percentage of LM water, with an associated decrease in juiciness. The results of this study suggest the feasibility of including meat quality in selection objectives to improve product quality. Favorable genetic correlations between IMF and eating quality traits suggest the possible merit of including IMF in the selection objective to improve, or restrict change in, pork eating quality.