Abstract:We deduce a posteriori error estimates of functional type for the stationary Stokes problem with slip and leak boundary conditions. The derived error majorants do not contain mesh dependent constants and are valid for a wide class of energy admissible approximations that satisfy the Dirichlet boundary condition on a part of the boundary. Different forms of error majorants contain global constants associated with Poincaré type inequalities or the stability (LBB) condition for the Stokes problem or constants ass… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.