We investigate the efficiency of orthogonal super greedy algorithm (OSGA) for sparse recovery and approximation under the restricted isometry property (RIP). We first show that under the RIP conditions of the measurement matrix Φ and the minimum magnitude of the nonzero coordinates of the signal, for l 2 bounded or l ∞ bounded noise vector e, with explicit stopping rules, OSGA can recover the support of an arbitrary K-sparse signal x from y = Φx + e in at most K steps. Then, we investigate the error performance of OSGA in m term approximation with regards to dictionaries satisfying the RIP in a separable Hilbert space. We establish a Lebesgue-type inequality for OSGA. Based on this inequality, we obtain the optimal rate of convergence for the sparse class induced by such dictionaries.