We discuss some new problems in several new mixed norm Hardy type spaces in products of bounded pseudoconvex domains with smooth boundary in Cnand then prove some new sharp decomposition theorems for multifunctional Hardy type spaces in the unit ball and then we show also similar results in pseudoconvex and convex domains of finite type extending previously known assertions obtained by first author earlier in Bergman spaces under certain Poisson integral type condition which vanishes in one functional case. Some new (in particular sharp in the unit ball) embeddings for some new mixed norm Hardy spaces in bounded pseudoconvex domains will be also indicated. Some new extensions of Poisson integral in the unit ball and some new assertions concerning them will be indicated and discussed in product domains. Some related multifunctional results are also given.Some new embedding theorems are also provided in some new mixed norm Hardy spaces in unbounded tubular domains over symmetric cones.
Введены несколько новых шкал пространств типа Харди со смешанной нормой в единичном шаре, в ограниченных псевдовыпуклых областях и в трубчатых областях над симметрическими конусами в Cn. В этих пространствах обобщающих известное пространство Харди обсуждаются различные задачи. Для пространств такого типа в единичном шаре приводятся в частности точные многофункциональные теоремы вложения типа Карлесона, приводятся также некоторые многофункциональные максимальные теоремы. В трубчатых и в псевдовыпуклых областях получены некоторые прямые аналоги и частичные обобщения этих теорем вложения. При одном дополнительном интегральном условии получены теоремы декомпозиции для весовых мультифункциональных пространств Харди в областях указанного типа,обобщающие ранее известные теоремы такого рода в случае обычных однофункциональных весовых пространств Харди. Ранее первым автором теоремы такого типа были получены в многофункциональных пространствах Бергмана. Наконец вводится прямое обобще ние интеграла типа Пуассона в произведении единичных шаров в Cnи обсуждаются некоторые задачи и обобщения известных результатов связанные с ним.