There are many reports that workouts relieve daily stress and are effective in improving mental and physical health. In recent years, there has been a demand for quick and easy methods to analyze and evaluate living organisms using biological information measured from wearable sensors. In this study, we attempted workout detection for one healthy female (40 years old) based on multiple types of biological information, such as the number of steps taken, activity level, and pulse, obtained from a wristband-type wearable sensor using machine learning. Data were recorded intermittently for approximately 64 days and 57 workouts were recorded. Workouts adopted for exercise were yoga and the workout duration was 1 h. We extracted 3416 min of biometric information for each of three categories: workout, awake activities (activities other than workouts), and sleep. Classification was performed using random forest (RF), SVM, and KNN. The detection accuracy of RF and SVM was high, and the recall, precision, and F-score values when using RF were 0.962, 0.963, and 0.963, respectively. The values for SVM were 0.961, 0.962, and 0.962, respectively. In addition, as a result of calculating the importance of the feature values used for detection, sleep state (39.8%), skin temperature (33.3%), and pulse rate (13.2%) accounted for approximately 86.3% of the total. By applying RF or SVM to the biological information obtained from the wearable wristband sensor, workouts could be detected every minute with high accuracy.