To optimally maintain buildings and other built infrastructure, the costs of managing them during their entire existence—that is, lifecycle costs—must be taken into account. However, due to technological improvements, developers now build more high-rise and high-performance buildings, meaning that new approaches to estimating lifecycle costs are needed. Meanwhile, an accelerating process of industrialization around the world means that global warming is also accelerating, and the damage caused by natural disasters due to climate change is increasing. However, the costs of losses related to such hazards are rarely incorporated into lifecycle-cost estimation techniques. Accordingly, this study explored the relationship between, on the one hand, some known parameters of natural disasters, such as earthquakes, high winds, and/or flooding, and on the other hand, the data on exceptional maintenance costs, represented by gross loss costs, generated by a large international hotel chain from 2007 to 2017. The regression model used revealed a correlation between heavy rain and insurance-claim payouts. This and other results can usefully inform safety and design guidelines for policymakers, both in disaster management and real estate, as well as in insurance companies