Estimating Classification Accuracy for Unlabeled Datasets Based on Block Scaling
Shingchern D. You,
Kai-Rong Lin,
Chien-Hung Liu
Abstract:This paper proposes an approach called block scaling quality (BSQ) for estimating the prediction accuracy of a deep network model. The basic operation perturbs the input spectrogram by multiplying all values within a block by , where is equal to 0 in the experiments. The ratio of perturbed spectrograms that have different prediction labels than the original spectrogram to the total number of perturbed spectrograms indicates how much of the spectrogram is crucial for the prediction. Thus, this ratio is inverse… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.