Estimating droplet size and count distributions over a prolonged period of time following a cough in indoor environments
Mehdi Jadidi,
Ahmet E Karataş,
Seth B Dworkin
Abstract:An empirical correlation and a set of machine learning (ML) models were developed to estimate droplet size and count distributions over an extended duration after a cough at different relative humidities (RHs), air temperatures and locations within an indoor environment. Experiments covered RHs of 20%–80% and air temperatures of 21 °C–26 °C. Droplet count distributions for 4 size bins (0.3–0.5, 0.5–1, 1–3 and 3–5 μm) were recorded for 70 min within the distance of 2 m from the cough source. Different ML models… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.