2016
DOI: 10.1016/j.jeconom.2016.04.005
|View full text |Cite
|
Sign up to set email alerts
|

Estimating dynamic equilibrium models using mixed frequency macro and financial data

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
7
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 15 publications
(7 citation statements)
references
References 93 publications
0
7
0
Order By: Relevance
“…In this paper, unlike in most existing work on mixed frequency models which focuses on forecasting, we examine the response of macroeconomic and financial variables to structural shocks identified relying on variables observed at different frequencies. In this sense, this paper complements the analysis by and Christensen, Posch, and van der Wel (2016) who emphasize the role of mixed frequency variables in DSGE models. To this end, following Ghysels (2016), we propose a mixed frequency VAR model, the MIDAS-VAR, that can be seen as a multivariate specification that encompasses both the unrestricted-MIDAS (U-MIDAS) model by Foroni, Marcellino, and Schumacher (2014) and the reverse unrestricted MIDAS (RU-MIDAS) model by Foroni, Guérin, and Marcellino (2015).…”
Section: Introductionmentioning
confidence: 53%
“…In this paper, unlike in most existing work on mixed frequency models which focuses on forecasting, we examine the response of macroeconomic and financial variables to structural shocks identified relying on variables observed at different frequencies. In this sense, this paper complements the analysis by and Christensen, Posch, and van der Wel (2016) who emphasize the role of mixed frequency variables in DSGE models. To this end, following Ghysels (2016), we propose a mixed frequency VAR model, the MIDAS-VAR, that can be seen as a multivariate specification that encompasses both the unrestricted-MIDAS (U-MIDAS) model by Foroni, Marcellino, and Schumacher (2014) and the reverse unrestricted MIDAS (RU-MIDAS) model by Foroni, Guérin, and Marcellino (2015).…”
Section: Introductionmentioning
confidence: 53%
“…There is a group of papers interested in methodological issues and/or performing mixedfrequency estimation with the aim of evaluating the impact on estimated parameters as compared with a different (often quarterly) frequency. Christensen et al (2016) estimate a small general equilibrium (AK-Vasicek) model with both macro and financial data. Their focus is mostly methodological and related to the use of the martingale estimating functions.…”
Section: Related Literaturementioning
confidence: 99%
“…Bai et al (2013) examined the relationship between MIDAS and Kalman filter. Christensen et al (2016) Mariano and Murasawa (2010), Qian (2016), Marcellino and Sivec (2016), Ghysels (2016), among many others. Foroni and Marcellino (2013) provide a survey for mixed-frequency treatment.…”
Section: Introductionmentioning
confidence: 99%