The biological clock expresses circadian rhythms, whose endogenous period (tau) is close to 24 h. Daily resetting of the circadian clock to the 24 h natural photoperiod might induce marginal costs that would accumulate over time and forward affect fitness. It was proposed as the circadian resonance theory. For the first time, we aimed to evaluate these physiological and cognitive costs that would partially explain the mechanisms of the circadian resonance hypothesis. We evaluated the potential costs of imposing a 26 h photoperiodic regimen compared to the classical 24 h entrainment measuring several physiological and cognitive parameters (body temperature, energetic expenditure, oxidative stress, cognitive performances) in males of a non-human primate (
Microcebus murinus
), a nocturnal species whose endogenous period is about 23.5 h. We found significant higher resting body temperature and energy expenditure and lower cognitive performances when the photoperiodic cycle length was 26 h. Together these results suggest that a great deviation of external cycles from tau leads to daily greater energetic expenditure, and lower cognitive capacities. To our knowledge, this study is the first to highlight potential mechanisms of circadian resonance theory.