2013
DOI: 10.1007/s11069-013-0654-6
|View full text |Cite
|
Sign up to set email alerts
|

Estimating storm surge intensity with Poisson bivariate maximum entropy distributions based on copulas

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
8
0
3

Year Published

2015
2015
2018
2018

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 21 publications
(11 citation statements)
references
References 22 publications
0
8
0
3
Order By: Relevance
“…En sus inicios la estimación de parámetros se realizaba con la técnica de mínimos cuadrados, promedios pesados, momentos y recientemente se perfeccionó la teoría de máxima verosimilitud. Actualmente los algoritmos de optimización o la técnica de máxima entropía son sin duda los procedimientos de mayor precisión, incluso para las distribuciones de extremos máximos y mínimos en sus versiones mezcladas bivariadas (Chen y Singh, 2018;Montaseri et al, 2018;Ahn y Palmer, 2016;Tao et al, 2013). Adicionalmente a la selección del tipo de distribución a utilizar, queda perfeccionar la técnica adecuada para la estimación de parámetros.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…En sus inicios la estimación de parámetros se realizaba con la técnica de mínimos cuadrados, promedios pesados, momentos y recientemente se perfeccionó la teoría de máxima verosimilitud. Actualmente los algoritmos de optimización o la técnica de máxima entropía son sin duda los procedimientos de mayor precisión, incluso para las distribuciones de extremos máximos y mínimos en sus versiones mezcladas bivariadas (Chen y Singh, 2018;Montaseri et al, 2018;Ahn y Palmer, 2016;Tao et al, 2013). Adicionalmente a la selección del tipo de distribución a utilizar, queda perfeccionar la técnica adecuada para la estimación de parámetros.…”
Section: Introductionunclassified
“…In the beginning, the estimation of parameters was done with the technique of least squares, heavy means, moments and recently the theory of maximum likelihood was perfected. Currently optimization algorithms or the maximum entropy technique are undoubtedly the most accurate procedures, even for the distributions of maximum and minimum extremes in their mixed bivariate versions (Chen & Singh, 2018, Montaseri et al, 2018, Ahn & Palmer, 2016Tao et al, 2013). In addition to the selection of the type of distribution to be used, it is necessary to perfect the appropriate technique for parameter estimation.…”
Section: Introductionmentioning
confidence: 99%
“…Shiau et al [17] used the copula function to describe the joint distribution of depth and duration of rainfall, ultimately deriving a depth-duration-frequency model. Tao et al [18] selected the Poisson bivariate compound maximum entropy distribution to establish the joint distribution of extreme water level and wave height in a typhoon period. Wahl et al [19] ascertained the likelihood of compound events of storm surge and heavy precipitation for the coastal areas of the United States (US), and the results showed that the flood risk from compound events was higher in the Atlantic/Gulf coast.…”
Section: Introductionmentioning
confidence: 99%
“…Recently, research on the application of multivariate extreme values (EVs) has increased. In these studies, several possible probability distribution functions have been used to characterize extreme sea level events: the Copula function (Salvadori et al, 2015;Corbella and Stretch, 2012;Michele et al, 2007;Salvadori et al, 2013;Tao et al, 2013), multivariate EV 35 function (Morton and Bowers, 1996;Coles and Tawn, 1994;Bhunya, et al, 2011), and MGPD function (which is a type of multivariate EV function) (Falk et al, 2004;Rootzé n and Tajvidi, 2006).…”
Section: Introductionmentioning
confidence: 99%