Currently, composite materials composed of a matrix and reinforcing components are widely used as a structural material for various engineering devices designed to operate under extreme loads of different types. By modifying a composite with structure-sensitive inclusions, such as a single-wall carbon nanotube, the mechanical properties, especially elastic characteristics, of the resulting material can be significantly improved. The results of investigation of a single-walled carbon nanotubes chirality influence on its elastic properties are presented. Various configurations of nanotubes, such as zigzag and armchair are considered. The dependences of the nanotube bulk modulus and shear modulus of its diameter are shown.