Meteorological and hydrological changes have an important influence on the ice formation mechanism and the detailed structure of ice materials in cold reservoirs, and directly determine the mechanical properties of ice materials. Based on long-term meteorological and hydrological monitoring data, and detailed structural evolution analysis of ice materials, combined with fracture mechanics and energy methods, a comprehensive fracture model of ice materials in cold regions is established. At the same time, the fracture mechanics test results and simulation results of ice materials are compared, and the model is finally optimized accurately to provide theoretical support for the study of the mechanical mechanism of ice materials.