Log-linear model is a technique used to analyze the cross-classification categorical data or the contingency table. It is used to obtain the parsimony models that describe the interaction between the categorical variables in contingency tables. Log-linear models are commonly used in evaluating higher dimensional contingency tables that involves more than two categorical variables. This study focuses on analyzing data of poisoned patients from 2012 to 2014 using log-linear model. There are two model analyzed; model for demographic data of patients and model of poisoning information. For the first model, the variables involved are gender, age, race and state. Variables for the second model are circumstance of exposure, type of exposure, location of exposure, route of exposure and types of poison. Both log-linear models are developed to investigate the association between variables in the model. As a result of this study, the best model for demographic data and poisoning information are the model with three-ways interaction. For the best model of demographic data, there is an association between gender, age and race, race, gender and state as well as age, race and state. Meanwhile, the best model for poisoning information reveals that there is relationship between circumstance of exposure, route of exposure and type of poison, location of exposure, route of exposure and type of poison, circumstance of exposure, type of exposure and route of exposure, circumstance of exposure, location of exposure and route of exposure, circumstance of exposure, type of exposure and type of poison and also type of exposure, location of exposure and type of poison.
Keywords: log-linear; demographic; gender; age; race; state; circumstance of exposure; type of exposure; location of exposure; route of exposure; types of poison