Blurred images are difficult to avoid in situations when minor Atmospheric turbulence or camera movement results in low-quality images. We propose a system that takes a blurred image as input and produces a deblurred image by utilizing various filtering techniques. Additionally, we utilize the Siamese Network to match local image segments. A Siamese Neural Network model is used that is trained to account for image matching in the spatial domain. The best-matched image returned by the model is then further used for Signal-to-Noise ratio and Point Spread Function estimation. The Wiener filter is then used to deblur the image. Finally, the results of the deblurring techniques with existing algorithms are compared and it is shown that the error in deblurring an image using the techniques presented in this paper is considerably lesser than other techniques.