Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We developed and validated digital twins (DTs) for contrast sensitivity function (CSF) across 12 prediction tasks using a data-driven, generative model approach based on a hierarchical Bayesian model (HBM). For each prediction task, we utilized the HBM to compute the joint distribution of CSF hyperparameters and parameters at the population, subject, and test levels. This computation was based on a combination of historical data (N = 56), any new data from additional subjects (N = 56), and “missing data” from unmeasured conditions. The posterior distributions of the parameters in the unmeasured conditions were used as input for the CSF generative model to generate predicted CSFs. In addition to their accuracy and precision, these predictions were evaluated for their potential as informative priors that enable generation of synthetic quantitative contrast sensitivity function (qCSF) data or rescore existing qCSF data. The DTs demonstrated high accuracy in group level predictions across all tasks and maintained accuracy at the individual subject level when new data were available, with accuracy comparable to and precision lower than the observed data. DT predictions could reduce the data collection burden by more than 50% in qCSF testing when using 25 trials. Although further research is necessary, this study demonstrates the potential of DTs in vision assessment. Predictions from DTs could improve the accuracy, precision, and efficiency of vision assessment and enable personalized medicine, offering more efficient and effective patient care solutions.
We developed and validated digital twins (DTs) for contrast sensitivity function (CSF) across 12 prediction tasks using a data-driven, generative model approach based on a hierarchical Bayesian model (HBM). For each prediction task, we utilized the HBM to compute the joint distribution of CSF hyperparameters and parameters at the population, subject, and test levels. This computation was based on a combination of historical data (N = 56), any new data from additional subjects (N = 56), and “missing data” from unmeasured conditions. The posterior distributions of the parameters in the unmeasured conditions were used as input for the CSF generative model to generate predicted CSFs. In addition to their accuracy and precision, these predictions were evaluated for their potential as informative priors that enable generation of synthetic quantitative contrast sensitivity function (qCSF) data or rescore existing qCSF data. The DTs demonstrated high accuracy in group level predictions across all tasks and maintained accuracy at the individual subject level when new data were available, with accuracy comparable to and precision lower than the observed data. DT predictions could reduce the data collection burden by more than 50% in qCSF testing when using 25 trials. Although further research is necessary, this study demonstrates the potential of DTs in vision assessment. Predictions from DTs could improve the accuracy, precision, and efficiency of vision assessment and enable personalized medicine, offering more efficient and effective patient care solutions.
The Augmented Hebbian Reweighting Model (AHRM) has been effectively utilized to model the collective performance of observers in various perceptual learning studies. In this work, we have introduced a novel hierarchical Bayesian Augmented Hebbian Reweighting Model (HB-AHRM) to simultaneously model the learning curves of individual participants and the entire population within a single framework. We have compared its performance to that of a Bayesian Inference Procedure (BIP), which independently estimates the posterior distributions of model parameters for each individual subject without employing a hierarchical structure. To cope with the substantial computational demands, we developed an approach to approximate the likelihood function in the AHRM with feature engineering and linear regression, increasing the speed of the estimation procedure by 20,000 times. The HB-AHRM has enabled us to compute the joint posterior distribution of hyperparameters and parameters at the population, observer, and test levels, facilitating statistical inferences across these levels. While we have developed this methodology within the context of a single experiment, the HB-AHRM and the associated modeling techniques can be readily applied to analyze data from various perceptual learning experiments and provide predictions of human performance at both the population and individual levels. The likelihood approximation concept introduced in this study may have broader utility in fitting other stochastic models lacking analytic forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.