The phase diagram of natural neon has been calculated for temperatures in the range of 17-50 K and pressures between 10(-2) and 2 x 10(3) bar. The phase coexistence between solid, liquid, and gas phases has been determined by the calculation of the separate free energy of each phase as a function of temperature. Thus, for a given pressure, the coexistence temperature was obtained by the condition of equal free energy of coexisting phases. The free energy was calculated by using nonequilibrium techniques such as adiabatic switching and reversible scaling. The phase diagram obtained by classical Monte Carlo simulations has been compared to that obtained by quantum path-integral simulations. Quantum effects related to the finite mass of neon cause that coexistence lines are shifted toward lower temperatures when compared to the classical limit. The shift found in the triple point amounts to 1.5 K, i.e., about 6% of the triple-point temperature. The triple-point isotope effect has been determined for (20)Ne, (21)Ne, (22)Ne, and natural neon. The simulation data show satisfactory agreement to previous experimental results, which report a shift of about 0.15 K between triple-point temperatures of (20)Ne and (22)Ne. The vapor pressure isotope effect has been calculated for both solid and liquid phases at triple-point conditions. The quantum simulations predict that this isotope effect is larger in the solid than in the liquid phase, and the calculated values show nearly quantitative agreement to available experimental data.