The problem of estimating velocity from a monocular camera and calibrated inertial measurement unit (IMU) measurements is revisited. For the presented setup, it is assumed that normalized velocity measurements are available from the camera. By applying results from nonlinear observer theory, we present velocity estimators with proven global stability under defined conditions, and without the need to observe features from several camera frames. Several nonlinear methods are compared with each other, also against an extended Kalman filter (EKF), where the robustness of the nonlinear methods compared with the EKF are demonstrated in simulations and experiments.