“…While effective, it requires constant and time consuming (e.g., 30 min; Meyer et al, 2017) re-calibration of model parameters that are sensitive to changes in muscle-tendon geometry which may not be well characterized for amputees or orthopedic impaired individuals (Shao et al, 2009;Meyer et al, 2017), and consequently, not suitable for real-time applications. Limb joint mechanics and kinematics have been continuously estimated from electromyography (EMG) signals (Sepulveda et al, 1993;Lee and Lee, 2005;Shao et al, 2009;Prasertsakul et al, 2012;Zhang et al, 2012;Chen et al, 2013Chen et al, , 2018Ardestani et al, 2014;Farmer et al, 2014;Ngeo et al, 2014;Li et al, 2015;Liu et al, 2017aLiu et al, , 2020Meyer et al, 2017;Huihui et al, 2018;Baby Jephil et al, 2020;Gupta et al, 2020;Keleş and Yucesoy, 2020;Wang et al, 2020), hip joint dynamics (Embry et al, 2018;Dey et al, 2019;Eslamy and Alipour, 2019), knee joint dynamics (Joshi et al, 2011;Embry et al, 2018;Eslamy and Alipour, 2019), force myography (Kumar et al, 2021), and ground reaction forces (GRF) (Liu et al, 2009;Jacobs and Ferris, 2015), among others. Support vector regression (SVR) and Gaussian process regression have been used to continuously estimate ankle angle and ankle moment simultaneously using hip and knee joint kinematics (Dey et al, 2019) and shank kinematics (Eslamy and Alipour, 2019), respectively.…”