2014
DOI: 10.2139/ssrn.2523848
|View full text |Cite
|
Sign up to set email alerts
|

Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2015
2015

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…In this case, handling non-Gaussian conditional heteroskedastic errors is of great importance. Other applications include the selection of factors in approximate factor models, as in Bai and Ng (2002), Cheng and Hansen (2012), and Cheng et al (2013); variable selection in non-linear models (Rech et al 2001); forecast combination of many forecasters (Issler andLima 2009, Samuels andSekkel 2013); time-series network models (Barigozzi andBrownlees 2013, Lam andSouza 2014a,b); and forecasting large covariance matrices as in Callot et al (2014). Finally, instrumental variable estimation in a data rich environment with dependent data is also a potential application; see Belloni et al (2012).…”
Section: Introductionmentioning
confidence: 99%
“…In this case, handling non-Gaussian conditional heteroskedastic errors is of great importance. Other applications include the selection of factors in approximate factor models, as in Bai and Ng (2002), Cheng and Hansen (2012), and Cheng et al (2013); variable selection in non-linear models (Rech et al 2001); forecast combination of many forecasters (Issler andLima 2009, Samuels andSekkel 2013); time-series network models (Barigozzi andBrownlees 2013, Lam andSouza 2014a,b); and forecasting large covariance matrices as in Callot et al (2014). Finally, instrumental variable estimation in a data rich environment with dependent data is also a potential application; see Belloni et al (2012).…”
Section: Introductionmentioning
confidence: 99%