Abstract:This paper considers estimation and inference about tail features when the observations beyond some threshold are censored. We first show that ignoring such tail censoring could lead to substantial bias and size distortion, even if the censored probability is tiny. Second, we propose a new maximum likelihood estimator (MLE) based on the Pareto tail approximation and derive its asymptotic properties. Third, we provide a small sample modification to the MLE by resorting to Extreme Value theory.The MLE with this … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.