The high-precision magnetic survey system is crucial for ocean exploration. However, most existing systems face challenges such as high noise levels, low sensitivity, and inadequate magnetic compensation effects. To address these issues, we developed a high-precision magnetic survey system based on the manned submersible “Deep Sea Warrior” for deep-ocean magnetic exploration. This system incorporates a compact optically pumped cesium (Cs) magnetometer sensor to measure the total strength of the external magnetic field. Additionally, a magnetic compensation sensor is included at the front end to measure real-time attitude changes of the platform. The measured data are then transmitted to a magnetic signal processor, where an algorithm compensates for the platform’s magnetic interference. We also designed a deep pressure chamber to allow for a maximum working depth of 4500 m. Experiments conducted in both indoor and field environments verified the performance of the proposed magnetic survey system. The results showed that the system’s sensitivity is ≤0.5 nT, the noise level of the magnetometer sensor is ≤1 pT/√Hz at 1 Hz, and the sampling rate is 10 Hz. The proposed system has potential applications in ocean and geophysical exploration.