Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditional levels of stress, such as pressure, temperature, vibration, voltage, or load to induce early failures. In this paper, a step stress partially accelerated life test (SS-PALT) is regarded under the progressive type-II censored data with random removals. The removals from the test are considered to have the binomial distribution. The life times of the testing items are assumed to follow lengthbiased weighted Lomax distribution. The maximum likelihood method is used for estimating the model parameters of length-biased weighted Lomax. The asymptotic confidence interval estimates of the model parameters are evaluated using the Fisher information matrix. The Bayesian estimators cannot be obtained in the explicit form, so the Markov chain Monte Carlo method is employed to address this problem, which ensures both obtaining the Bayesian estimates as well as constructing the credible interval of the involved parameters. The precision of the Bayesian estimates and the maximum likelihood estimates are compared by simulations. In addition, to compare the performance of the considered confidence intervals for different parameter values and sample sizes. The Bootstrap confidence intervals give more accurate results than the approximate confidence intervals since the lengths of the former are less than the lengths of latter, for different sample sizes, observed failures, and censoring schemes, in most cases. Also, the percentile Bootstrap confidence intervals give more accurate results than Bootstrap-t since the lengths of the former are less than the lengths of latter for different sample sizes,