This paper focuses on the high intensity filaments (dye patches) embedded in dye plumes in a wall-bounded shear flow, to investigate the shear effect on the dye patch distribution. Motivated by the widely concerned inverse estimation of the source location, we try extracting useful information to know the source location from downstream dye patches. Accordingly, we changed the dye injection location at different distances from the wall and made observations at different downstream (diffusion) distances from the source. The orientation angle and roundness of dye patches were concerned to examine the shear effect and dye patch characteristics. To capture the dye plume images, a planar laser induced fluorescence (PLIF) technique was used. The orientation and roundness of each dye patch were calculated by least-square fitting. The statistics of both the orientation angle and the roundness were compared with those in homogeneous turbulent cases to reveal the shear effect. Different from uniformlyorientated dye patches in the homogeneous flow, larger occurrence probabilities with positive orientation angles of dye patches are observed in wall-bounded shear flow, in particular, when the injection location is near the wall. As with information extraction for the inverse estimation of source location, it is found that the orientation distribution of dye patches is independent of the diffusion distance, but related with the injection location from the wall. While for the homogeneous flow cases, a strong dependence on the diffusion distance is observed in the orientation distribution profiles. As for the roundness, similar aspects are found regarding the dependencies on the injection location in shear flow and on diffusion distance in homogeneous flow.