Intelligent compaction (IC) has emerged as a breakthrough technology that utilizes advanced sensing, data transmission, and control systems to optimize asphalt pavement compaction quality and efficiency. However, accurate assessment of compaction status remains challenging under real construction conditions. This paper reviewed recent progress and applications of smart sensors and machine learning (ML) to address existing limitations in IC. The principles and components of various advanced sensors deployed in IC systems were introduced, including SmartRock, fiber Bragg grating, and integrated circuit piezoelectric acceleration sensors. Case studies on utilizing these sensors for particle behavior monitoring, strain measurement, and impact data collection were reviewed. Meanwhile, common ML algorithms including regression, classification, clustering, and artificial neural networks were discussed. Practical examples of applying ML to estimate mechanical properties, evaluate overall compaction quality, and predict soil firmness through supervised and unsupervised models were examined. Results indicated smart sensors have enhanced compaction monitoring capabilities but require robustness improvements. ML provides a data-driven approach to complement traditional empirical methods but necessitates extensive field validation. Potential integration with digital construction technologies such as building information modeling and augmented reality was also explored. In conclusion, leveraging emerging sensing and artificial intelligence presents opportunities to optimize the IC process and address key challenges. However, cooperation across disciplines will be vital to test and refine technologies under real-world conditions. This study serves to advance understanding and highlight priority areas for future research toward the realization of IC’s full potential.