We report the development of photocatalytically patterned TiO(2) arrays for selective on-plate enrichment and direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of phosphopeptides. A thin TiO(2) nanofilm with controlled porosity is prepared on gold-covered glass slides by a layer-by-layer (LbL) deposition/calcination process. The highly porous and rough nanostructure offers high surface area for selective binding of phosphorylated species. The patterned arrays are generated using an octadecyltrichlorosilane (OTS) coating in combination of UV irradiation with a photomask, followed by NaOH etching. The resulting hydrophilic TiO(2) spots are thus surrounded by a hydrophobic OTS layer, which can facilitate the enrichment of low-abundance components by confining a large volume sample into a small area. The TiO(2) arrays exhibit high specificity toward phosphopeptides in complex samples including phosphoprotein digests and human serum, and the detection can be made in the fmole range. Additional advantages of the arrays include excellent stability, reusability/reproducibility, and low cost. This method has been successfully applied to the analysis of phosphopeptides in nonfat milk. The patterned TiO(2) arrays provide an attractive interface for performing on-plate reactions, including selective capture of target species for MALDI-MS analysis, and can serve as a versatile lab-on-a-chip platform for high throughput analysis in phosphoproteome research.