The paper deals with a brief overview of magnetoelastic sensors and magnetoelastic sensors used in general for sensing bending forces, either directly or sensing bent structures, and defines the current state of the art. Bulk magnetoelastic force sensors are usually manufactured from transformer sheets or amorphous alloys. In praxis, usually, a compressive force is sensed by bulk magnetoelastic sensors; however, in this paper, the sensor is used for the measurement of bending forces, one reason being that the effect of such forces is easily experimentally tested, whereas compressive forces acting on a single sheet make buckling prevention a challenge. The measurement of the material characteristics that served as inputs into a FEM simulation model of the sensor is presented and described. The used material was considered to be mechanically and magnetically isotropic and magnetically nonlinear, even though the real sheet showed anisotropic behavior to some degree. A sinusoidal magnetizing current waveform was used in the experimental part of this paper, which was created by a current source. The effects of various frequencies, amplitudes, and sensor geometries were tested. The experimental part of this paper studies the sensors’ RMS voltage changes to different loadings that bend the sheet out of its plane. The output voltage was the induced voltage in the secondary coil and was further analyzed to compute the linearity and sensitivity of the sensor at the specific current characteristic. It was found that for the given material, the most favorable operating conditions are obtained with higher frequency signals and higher excitation current amplitudes. The linearity of the sensor can be improved by placing the holes of the windings at different angles than 90° and by placing them further apart along the sheet’s length. The current source was created by a simple op-amp voltage-to-current source controlled by a signal generator, which created a stable waveform. It was found that transformer sheet bending sensors with the dimensions described in this paper are suitable for the measurement of small forces in the range of up to 2 N for the shorter sensors and approximately 0.2 N for the longer sensors.