Land surface hydrothermal conditions (LSHCs) reflect land surface moisture and heat conditions, and play an important role in energy and water cycles in soil-plant-atmosphere continuum. Based on comparison of four evaluation methods (namely, the classic statistical method, geostatistical method, information theory method, and fractal method), this study proposed a new scheme for evaluating the spatial heterogeneity of LSHCs. This scheme incorporates diverse remotely sensed surface parameters, e.g., leaf area index-LAI, the normalized difference vegetation index-NDVI, net radiation-Rn, and land surface temperature-LST. The LSHCs can be classified into three categories, namely homogeneous, moderately heterogeneous and highly heterogeneous based on the remotely sensed LAI data with a 30 m spatial resolution and the combination of normalized information entropy (S') and coefficient of variation (CV). Based on the evaluation scheme, the spatial heterogeneity of land surface hydrothermal conditions at six typical flux observation stations in the Heihe River Basin during the vegetation growing season were evaluated. The evaluation results were consistent with the land surface type characteristics exhibited by Google Earth imagery and spatial heterogeneity assessed by high resolution remote sensing evapotranspiration data. Impact factors such as precipitation and irrigation events, spatial resolutions of remote sensing data, heterogeneity in the vertical direction, topography and sparse vegetation could also affect the evaluation results. For instance, short-term changes (precipitation and irrigation events) in the spatial heterogeneity of LSHCs can be diagnosed by energy factors, while long-term changes can be indicated by vegetation factors. The spatial heterogeneity of LSHCs decreases when decreasing the spatial resolution of remote sensing data. The proposed evaluation scheme would be useful for the quantification of spatial heterogeneity of LSHCs over flux observation stations toward the global scale, and also contribute to the improvement of the accuracy of estimation and validation for remotely sensed (or model simulated) evapotranspiration.