2017
DOI: 10.1016/j.jedc.2017.09.006
|View full text |Cite
|
Sign up to set email alerts
|

Estimation of financial agent-based models with simulated maximum likelihood

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
14
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 59 publications
(14 citation statements)
references
References 84 publications
(61 reference statements)
0
14
0
Order By: Relevance
“…Despite the model is relatively simple, different contributions have tried to match the statistical properties of its output with those observed in real financial markets (Boswijk et al, 2007;Recchioni et al, 2015;Lamperti, 2016;Kukacka and Barunik, 2016). This makes the model an ideal test case for our surrogate: it is relatively cheap in terms of computational needs, it offers a reasonably large parameter space and it has been extensively studied in the literature.…”
Section: Experimental Design and Empirical Settingmentioning
confidence: 99%
“…Despite the model is relatively simple, different contributions have tried to match the statistical properties of its output with those observed in real financial markets (Boswijk et al, 2007;Recchioni et al, 2015;Lamperti, 2016;Kukacka and Barunik, 2016). This makes the model an ideal test case for our surrogate: it is relatively cheap in terms of computational needs, it offers a reasonably large parameter space and it has been extensively studied in the literature.…”
Section: Experimental Design and Empirical Settingmentioning
confidence: 99%
“…Alfarano and Milakovi c (2009) studied the herding behaviour of traders via a probabilistic model based on finance agent simulation. Franke and Westerhoff (2012), Chen and Lux (2018), and Barde (2016) employed estimated moments in their simulation approach, whereas Kukacka and Barunik (2017) used the maximum likelihood in their simulation method. Diverse estimation methods have been applied by means of the particle filtering approach for state-space models with latent variables.…”
Section: Agent-based Simulation Literature Reviewmentioning
confidence: 99%
“…To this end, transition probabilities of return time series, observed and simulated, are discretized and compared in terms of contexttree weighted Markov approximations (Barde 2016(Barde , 2017 or JS divergence (Lamperti 2018). Alternatively, predictive likelihoods are estimated on the continuous time series of returns via (Guerini and Moneta 2017) fitting a VAR model or (Kukacka and Barunik 2017) kernel density estimation and again compared and matched with model predictions. These methods go beyond moment matching and allow to generate and evaluate model predictions.…”
Section: Introductionmentioning
confidence: 99%