The pavement is a complex structure that is influenced by various environmental and loading conditions. The regular assessment of pavement performance is essential for road network maintenance. International roughness index (IRI) and pavement condition index (PCI) are well-known indices used for smoothness and surface condition assessment, respectively. Machine learning techniques have recently made significant advancements in pavement engineering. This paper presents a novel roughness-distress study using random forest (RF). After determining the PCI and IRI values for the sample units, the PCI prediction process is advanced using RF and random forest trained with a genetic algorithm (RF-GA). The models are validated using correlation coefficient (CC), scatter index (SI), and Willmott’s index of agreement (WI) criteria. For the RF method, the values of the three parameters mentioned were −0.177, 0.296, and 0.281, respectively, whereas in the RF-GA method, −0.031, 0.238, and 0.297 values were obtained for these parameters. This paper aims to fulfill the literature’s identified gaps and help pavement engineers overcome the challenges with the conventional pavement maintenance systems.