The market value of cotton in exporting countries, such as Burkina Faso, depends on the quality of major fiber properties. A lack of variation among the genetic resources available in Burkina Faso hinders breeding progress to meet fiber quality demands in future cultivars. F1 populations from a half diallel crossing scheme between lines developed at Texas A&M AgriLife cotton breeding program at Lubbock and germplasm accessed from Burkina Faso were evaluated for fiber property enhancement. Crosses exclusively within common origin materials did not result in highly enhanced hybrids. Hybrids within American materials expressed significant SCA effects undesirable for future cultivars in Burkina Faso. Five hybrids within the Burkina Faso material expressed significant SCA effects: two of them implicating FK37 as the better parent in transmitting superior targeted fiber traits to its progenies. Hybrid FK37xE9 significantly enhanced UHML, Str, UI and SFI but not Mic and Rd. Inter-program hybrids with at least one significant SCA effect were crosses with female American lines and male Burkina Faso parents. Hybrids E53x16-2-216FQ, E53x15-10-610-7 and E32x15-10-610-7 showed significantly improved Str and UI for the most economically important traits, which also include Mic, UHML, SFI, Rd and +b. Together, the GCA and SCA effects, heritability and correlations showed more additive than non-additive gene actions. Therefore, knowledge of the best combiners and hybrids could be used in the cultivar development process to enhance value with improved fiber characteristics.