“…Reanalysis products provide soil moisture data over long time periods (Li et al, 2005;Baatz et al, 2021) and typically merge soil moisture observations and land surface model output by adopting data assimilation techniques, which often results in better soil moisture estimation than satellite products (Naz et al, 2020;Beck et al, 2021;Mahto and Mishra, 2019). At present, reanalysis products are employed in a wide range of fields such as hydrological model initialisation (Zheng et al, 2020), flood modelling (McClean et al, 2023;El Khalki et al, 2020;Zheng et al, 2023), drought monitoring (Chen et al, 2019;El Khalki et al, 2020) and climatology research (Miralles et al, 2014). Currently, many reanalysis products exist including ERA5-Land (Muñoz Sabater 2019;Muñoz-Sabater et al, 2021), CFSv2 (Saha et al, 2011(Saha et al, , 2014, MERRA2 (GMAO, 2015;Gelaro et al, 2017), JRA55 (JMA, 2013;Kobayashi et al, 2015), GLDAS-Noah (Rodell et al, 2004;Beaudoing and Rodell, 2020), CRA40 (Liu et al, 2017;Li et al, 2021), GLEAM (Miralles et al, 2011;Martens et al, 2017) datasets and SMAP Level 4 datasets (Reichle et al, 2019(Reichle et al, , 2017a (one should note that technically speaking, GLDAS-Noah and GLEAM datasets are global land model-based products; we termed them "reanalysis products" in this paper for consistency).…”