2022
DOI: 10.3389/fnbot.2022.978014
|View full text |Cite
|
Sign up to set email alerts
|

Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network

Abstract: Estimating human motion intention, such as intent joint torque and movement, plays a crucial role in assistive robotics for ensuring efficient and safe human-robot interaction. For coupled human-robot systems, surface electromyography (sEMG) signal has been proven as an effective means for estimating human's intended movements. Usually, joint movement estimation uses sEMG signals measured from multiple muscles and needs many sEMG sensors placed on the human body, which may cause discomfort or result in mechani… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 34 publications
0
0
0
Order By: Relevance