Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
SUMMARYSelectivity bias caused by protest responses in Contingent Valuation studies can be detected and corrected by means of sample selection models. This paper compares two methods: the Heckman 2-steps method and the full ML, applied to data on forest recreation -where WTP is elicited as a continuous variable. Either method has its own drawback: computational complexity for the ML method, susceptibility to collinearity problems for the 2-steps method. The latter problem is observed in our best fitting specification, with the ML estimator outperforming the 2-steps. In this application, overlooking the effect of protest responses would cause an upwards bias of the final estimates of WTP.Keywords: Contingent valuation, protest responses, sample selection, MLE, two-steps method JEL: C35, C51, C81, D60, H41, Q26
NON TECHNICAL SUMMARYContingent Valuation studies are often characterized by a considerable amount of protest responses, which may have an important effect on the final estimates if the protest responses are not randomly distributed across the sample. If the standard procedure of censoring protest responses is adopted, the estimates may be biased. Sample selection models can detect and -if necessary-correct selectivity bias. We apply a sample selection model to data on valuation of forest resources for recreational use, where WTP responses are obtained through a mixed dichotomous choice-open ended elicitation method. Dealing with continuous data for WTP allows us to apply the Heckman 2-steps method, and compare it to the full ML estimator. Either method has its own drawback: computational complexity for the ML method, susceptibility to collinearity problems for the 2-steps method. The latter is observed in our model. The results show that censoring protest responses in this study would lead to overestimates of the willingness to pay.
CONTENTS