Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
-The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.Index terms: modelling, prediction, backpropagation neural networks. Desenvolvimento e avaliação de modelos de redes neurais para estimação da irradiação solar diária em Córdoba, ArgentinaResumo -O objetivo deste trabalho foi desenvolver modelos de redes neuronais, do tipo retropropagação, para a estimação da irradiação solar, a partir de dados de irradiação solar extraterrestre, amplitude térmica, precipitação, nebulosidade e razão de insolação. O treinamento e a validação foram realizados com dados correspondentes a Córdoba, Argentina. O comportamento e ajuste entre os valores observados e os estimados pelas redes foram avaliados para diferentes combinações das variáveis de entrada, que apresentaram valores do erro quadrático médio entre 3,15 e 3,88 MJ m -2 d -1 . Este último valor corresponde ao modelo que calcula a irradiação somente utilizando precipitação e amplitude térmica diária. Os resultados exibem em todos os modelos um ajuste apropriado ao comportamento sazonal da irradiação solar e permitem concluir a pertinência e o adequado desempenho desse método para estimar fenômenos complexos como a irradiação solar.Termos para indexação: modelagem, predição, redes neurais de retropropagação.
-The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.Index terms: modelling, prediction, backpropagation neural networks. Desenvolvimento e avaliação de modelos de redes neurais para estimação da irradiação solar diária em Córdoba, ArgentinaResumo -O objetivo deste trabalho foi desenvolver modelos de redes neuronais, do tipo retropropagação, para a estimação da irradiação solar, a partir de dados de irradiação solar extraterrestre, amplitude térmica, precipitação, nebulosidade e razão de insolação. O treinamento e a validação foram realizados com dados correspondentes a Córdoba, Argentina. O comportamento e ajuste entre os valores observados e os estimados pelas redes foram avaliados para diferentes combinações das variáveis de entrada, que apresentaram valores do erro quadrático médio entre 3,15 e 3,88 MJ m -2 d -1 . Este último valor corresponde ao modelo que calcula a irradiação somente utilizando precipitação e amplitude térmica diária. Os resultados exibem em todos os modelos um ajuste apropriado ao comportamento sazonal da irradiação solar e permitem concluir a pertinência e o adequado desempenho desse método para estimar fenômenos complexos como a irradiação solar.Termos para indexação: modelagem, predição, redes neurais de retropropagação.
This article focuses on the estimation of the solar global daily radiation using the values of the air temperature. The reason for choosing this environmental parameter is that the data of the air temperature are available worldwide and are easy to be recorded from the local meteorological station. Specified models were developed to estimate the global solar radiation data in considered cities in Tunisia, North Africa. A site‐independent model was proposed to estimate the solar radiation using only the minimum and the maximum daily air temperature. By using five statistical indicators, the proposed models were assessed in order to present the best model for each region in Tunisia. Acceptable values of the indicators were recorded. The presented statistical test is based on recorded data from meteorological stations implemented in Tunis, Kairouan, Sfax, Gabes, and Kebili. The choice of the five selected cities is based on the availability of the metrological measurements. The assessment of the potential of the solar energy in the considered cities was presented. Zoning the assessment of the solar radiation would give a better understanding of the distribution of solar radiation and an overview of the general solar radiation climatic conditions within Tunisia. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 600–607, 2019
Abstract:Hydrological modelling is a complicated procedure and there are many tough questions facing all modellers: what input data should be used? how much data is required? and what model should be used? In this paper, the gamma test (GT) has been used for the first time in modelling one of the key hydrological components: solar radiation. The study aimed to resolve the questions about the relative importance of input variables and to determine the optimum number of data points required to construct a reliable smooth model. The proposed methodology has been studied through the estimation of daily solar radiation in the Brue Catchment, the UK. The relationship between input and output in the meteorological data sets was achieved through error variance estimation before the modelling using the GT. This work has demonstrated how the GT helps model development in nonlinear modelling techniques such as local linear regression (LLR) and artificial neural networks (ANN). It was found that the GT provided very useful information for input data selection and subsequent model development. The study has wider implications for various hydrological modelling practices and suggests further exploration of this technique for improving informed data and model selection, which has been a difficult field in hydrology in past decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.