The first approved dengue vaccine, CYD-TDV, a chimeric, live-attenuated, tetravalent dengue virus vaccine, was recently licensed in 13 countries, including Brazil. In light of recent vaccine approval, we modeled the cost-effectiveness of potential vaccination policies mathematically based on data from recent vaccine efficacy trials that indicated that vaccine efficacy was lower in seronegative individuals than in seropositive individuals. In our analysis, we investigated several vaccination programs, including routine vaccination, with various vaccine coverage levels and those with and without large catch-up campaigns. As it is unclear whether the vaccine protects against infection or just against disease, our model incorporated both direct and indirect effects of vaccination. We found that in the presence of vaccine-induced indirect protection, the cost-effectiveness of dengue vaccination decreased with increasing vaccine coverage levels because the marginal returns of herd immunity decreases with vaccine coverage. All routine dengue vaccination programs that we considered were cost-effective, reducing dengue incidence significantly. Specifically, a routine dengue vaccination of 9-year-olds would be cost-effective when the cost of vaccination per individual is less than $262. Furthermore, the combination of routine vaccination and large catch-up campaigns resulted in a greater reduction of dengue burden (by up to 93%) than routine vaccination alone, making it a cost-effective intervention as long as the cost per course of vaccination is $255 or less. Our results show that dengue vaccination would be cost-effective in Brazil even with a relatively low vaccine efficacy in seronegative individuals.