2018
DOI: 10.21701/bolgeomin.129.3.006
|View full text |Cite
|
Sign up to set email alerts
|

Estimation of the significance of the Foster’s wavelet spectrum by means of a permutation test and its application for paleoclimate records

Abstract: Here we propose a permutation test -a non-parametric computing-intensive test-to evaluate the statistical significance of the Foster's wavelet spectrum by means of Monte Carlo simulations. A procedure (algorithm) is introduced in order to carry out this aim. The Foster's wavelet is an adequate method to cope directly with unevenly spaced paleoclimatic time series. We have conducted time series simulations to study the performance of the Foster's wavelet spectrum and applied the permutation test to localize per… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 21 publications
0
4
0
1
Order By: Relevance
“…The aim of this article is to compare paleoclimatic time series in the frequency domain in order to identify similar patterns of variability and to draw connections between distinct climate proxies. To this end, we used spectral analysis methods specifically adapted to deal with irregularly sampled time series, as the resampling with constant time-steps can introduce unpredictable biases in the results (Schulz and Stattegger 1997, Schulz and Mudelsee 2002, Witt and Schumann 2005, Pardo-Igúzquiza and Rodríguez-Tovar 2012, Polanco-Martínez and Faria 2018, Lenoir and Crucifix 2018a.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The aim of this article is to compare paleoclimatic time series in the frequency domain in order to identify similar patterns of variability and to draw connections between distinct climate proxies. To this end, we used spectral analysis methods specifically adapted to deal with irregularly sampled time series, as the resampling with constant time-steps can introduce unpredictable biases in the results (Schulz and Stattegger 1997, Schulz and Mudelsee 2002, Witt and Schumann 2005, Pardo-Igúzquiza and Rodríguez-Tovar 2012, Polanco-Martínez and Faria 2018, Lenoir and Crucifix 2018a.…”
Section: Methodsmentioning
confidence: 99%
“…Their application to paleoclimatic time series has highlighted the importance of nonstationarities to understand past climate variability (e.g. Witt and Schumann 2005, Polanco-Martinez andFaria 2018) RCCs are detected by means of numerous proxies all over the Mediterranean basin: vegetation changes (e.g.…”
mentioning
confidence: 99%
“…Particularly, the Point-Measure Enhancements (PME), the Intensity-Scale Skill Score (ISS) and the Wavelet Coefficient Score (WCS) were developed. Polanco-Martínez and Faria [30] used the wavelet transform in order to analyze the oxygen isotope ratio of the GISP2 deep ice core (Greenland) data. In fact, to evaluate the statistical significance of the Foster's wavelet spectrum, a non-parametric computing-intensive test was developed based on the Monte Carlo simulations.…”
Section: Application Of Wt In Geo-sciences and Geophysicsmentioning
confidence: 99%
“…Una posible solución para enfrentar el carácter no equiespaciado de las series temporales paleoclimáticas es interpolar en el tiempo y, así, obtener una serie temporal equiespaciada. Sin embargo, la interpolación implica un conocimiento previo del comportamiento de la variable de estudio, y suaviza los datos de tal modo que al calcular el espectro puede suprimir información espectral en las altas frecuencias (Schulz & Stattegger, 1997;Schulz & Mudelsee, 2002;Pardo-Iguzquiza & Rodríguez-Tovar, 2012;Polanco-Martínez, 2014;Polanco-Martínez & Faria, 2018). Otra solución consiste en utilizar métodos de análisis espectral que puedan aplicarse directamente (sin previa interpolación en el tiempo) a las series temporales paleoclimáticas, tales como el periodograma suavizado de Lomb-Scargle (Lomb 1976;Scargle 1982Scargle , 1989Schulz & Stattegger, 1997;Schulz & Mudelsee, 2002;Pardo-Igúzquiza & Rodríguez-Tovar 2011;Polanco-Martínez, 2014).…”
Section: Introductionunclassified