Remote images are useful tools for detecting and monitoring landslides, including shallow landslides in agricultural environments. However, the use of non-commercial satellite images to detect the latter is limited because their spatial resolution is often comparable to or greater than landslide sizes, and the spectral characteristics of the pixels within the landslide body (LPs) are often comparable to those of the surrounding pixels (SPs). The buried archaeological remains are also often characterized by sizes that are comparable to image spatial resolutions and the spectral characteristics of the pixels overlying them (OBARPs) are often comparable to those of the pixels surrounding them (SBARPs). Despite these limitations, satellite images have been used successfully to detect many buried archaeological remains since the late 19th century. In this research context, some methodologies, which examined the values of OBARPs and SBARPs, were developed to rank images according to their capability to detect them. Based on these previous works, this paper presents an updated methodology to detect shallow landslides in agricultural environments. Sentinel-2 and Google Earth (GE) images were utilized to test and validate the methodology. The landslides were mapped using GE images acquired simultaneously or nearly simultaneously with the Sentinel-2 data. A total of 52 reference data were identified by monitoring 14 landslides over time. Since remote sensing indices are widely used to detect landslides, 20 indices were retrieved from Sentinel-2 images to evaluate their capability to detect shallow landslides. The frequency distributions of LPs and SPs were examined, and their differences were evaluated. The results demonstrated that each index could detect shallow landslides with sizes comparable to or smaller than the spatial resolution of Sentinel-2 data. However, the overall accuracy values of the indices varied from 1 to 0.56 and two indices (SAVI and RDVI) achieved overall accuracy values equal to 1. Therefore, to effectively distinguish areas where shallow landslides are present from those where they are absent, it is recommended to apply the methodology to many image processing products. In conclusion, given the significant impact of these landslides on agricultural activity and surrounding infrastructures, this methodology provides a valuable tool for detecting and monitoring landslide presence in such environments.