Monitoring track unevenness is important for noise and vibration control and track maintenance. Rail corrugation and shorter wavelength track unevenness can be measured using the corrugation analysis trolley, but it is not suitable for measurement over long distance. It is of great significance to study the dynamic behavior of the response of the axle box and bogie to the unevenness excitation for a better understanding of the measurement results. In this paper, the dynamic response of the axle box and bogie to the unevenness excitation is analyzed in the frequency domain by taking account of multiple wheel–rail interactions, which is the case in practice. The response of the axle box and bogie is found to be affected by the so-called P2 resonances at low and medium frequencies and the standing waves of rail vibration at higher frequencies due to the multiple wheel–rail interactions. Based on the analysis of the response of the axle box and bogie, the measurability of track unevenness is discussed. Results show that the measurement of rail unevenness using the axle box response is mainly limited by the P2 resonance. The frequency range of measurement for the ballasted track studied is estimated to be 1–35 Hz, corresponding to the measurable unevenness wavelength of 0.6–20 m (or longer) at a vehicle speed of 20 m/s. Above 200 Hz, the standing waves of rail vibration will cause serious uncertainty in the measurement of short wavelength rail irregularity using the axle box response for the resilient track. Short pitch rail corrugation, however, can be evaluated using the axle box response due to its strong correlation with certain modes of the wheel–track system.