In this note, we consider an m-dimensional stationary multivariate long memory ARFIMA (AutoRegressive Fractionally Integrated Moving Average) process, which is defined as : A(L)D(L) (y 1 (t), . . . , y m (t)) = B(L) (ε 1 (t), . . . , ε m (t)) , where M denotes the transpose of the matrix M . We determine the minimum Hellinger distance estimator (MHDE) of the parameters of a stationary multivariate long memory ARFIMA. This method is based on the minimization of the Hellinger distance between the random function of f n (.) and a theoretical probability density f θ (.). We establish, under some assumptions, the almost sure convergence of the estimator and its asymptotic normality.Résumé. Dans cette note, nous considérons un processus ARFIMA (AutoRegressive Fractionally Integrated Moving Average) stationnaire multivariéà longue mémoire défini par : A(L)D(L) (y 1 (t), . . . , y m (t)) = B(L) (ε 1 (t), . . . , ε m (t)) , où M représente la transposée de la matrice M . Nous déterminons le minimum de distance de Hellinger d'un estimateur (MHDE) de paramètres d'un processus ARFIMA stationnaire multivariéà longue mémoire. Cette méthode consisteà minimiser la distance de Hellinger entre la densité de probabilité théorique f θ (.) et une fonction aléatoire f n (.). Sous quelques hypothèses, nousétablissons la convergence presque sûre de l'estimateur et sa normalité asymptotique.In this paper, we generalize the results of Kamagaté and Hili (2012) to the multivariate case. We consider an m-dimensional ARFIMA stationary process (y 1 (t), . . . , y m (t)) following d < 1 2 which is generated bywhere M denotes the transpose of the matrix M . After the invertibility of the above process, we establish the consistence and asymptotic normality by using the Minimum Hellinger Distance method. The reasons for choosing this estimation technic lie in the fact that these estimators obtained are efficient and robust (cf.