1984
DOI: 10.1007/bf01389473
|View full text |Cite
|
Sign up to set email alerts
|

Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier

Abstract: R6sum6. On 6tablit des majorations explicites de l'erreur de meilleure approximation polynomiale ainsi que des majorations explicites et nonexplicites de l'erreur d'interpolation de Lagrange, lorsque la fonction consid6r6e appartient /tun espace de Sobolev d'ordre non entier d6fini sur un ouvert born6 de ~".Les r6sultats obtenus g6ndralisent les r6sultats connus dans le cas des espaces de Sobolev d'ordre entier. Summary.Explicit bounds for the best polynomial approximation error, explicit and non-explicit boun… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
15
0

Year Published

1989
1989
2020
2020

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 25 publications
(17 citation statements)
references
References 12 publications
0
15
0
Order By: Relevance
“…where we have used an estimate of the interpolation error in a fractional order Sobolev spaces (see, for instance, [16] and [35])…”
Section: ) We Derive the Inequalitymentioning
confidence: 99%
“…where we have used an estimate of the interpolation error in a fractional order Sobolev spaces (see, for instance, [16] and [35])…”
Section: ) We Derive the Inequalitymentioning
confidence: 99%
“…[4,21], Chapter 4), Now let A be a generic vertex of S on a given side of S , and M be a generic vertex of S , regarded as a point located on the same side S i of S as A. Clearly enough we have:…”
Section: On the Other Hand By Simple Changes Of Variables On Eachmentioning
confidence: 99%
“…Forming the difference of Eqs. (19) and (20) after inserting (22) into (19) and (21) into (20) yields…”
Section: Theoremmentioning
confidence: 99%