The plant immune system involves cell-surface receptors that detect intercellular pathogenderived molecules, and intracellular receptors that activate immunity upon detection of 10 pathogen-secreted effectors that act inside the plant cell. Surface receptor-mediated immunity has been extensively studied but in authentic interactions between plants and microbial pathogens, its presence impedes study of intracellular receptor-mediated immunity alone. How these two immune pathways interact is poorly understood. Here, we reveal mutual potentiation between these two recognition-dependent defense pathways.
15Recognition by surface receptors activates multiple protein kinases and NADPH oxidases, whereas intracellular receptors primarily elevate abundance of these proteins. Reciprocally, the intracellular receptor-dependent hypersensitive cell death response is strongly enhanced by activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against Pseudomonas syringae. Thus, immune pathways 20 activated by cell-surface and intracellular receptors mutually potentiate to activate strong defense that thwarts pathogens. By studying the activation of intracellular receptors in the absence of surface receptor-mediated immunity, we have dissected the relationship between the two distinct immune systems. These findings reshape our understanding of plant immunity and have broad implications for crop improvement. 25